Gibbs Free Energy Questions

Thermochemistry: Gibbs Free Energy Calculations

- 1. Calculate ΔG^0 to predict if the following reactions are spontaneous under standard conditions.
 - $2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$ (a)

Spontaneous?

 $6 \text{ Cl}_2(g) + 2 \text{ Fe}_2\text{O}_3(s) \rightarrow 4 \text{ Fe}\text{Cl}_3(s) + 3 \text{ O}_2(g)$ Spontaneous? (b)

2. Consider the following chemical equation: $A + B \rightarrow C + D$

If $\Delta H^{\circ} = -844 \text{ kJ}$ and $\Delta S^{\circ} = -165 \text{ J/K}$, is this reaction spontaneous at 298 K?

3. Consider the following chemical equation: $A + B \rightarrow C + D$

If $\Delta H^{\circ} = 572 \text{ kJ}$ and $\Delta S^{\circ} = 179 \text{ J/K}$, is this reaction spontaneous at 298 K?

If a reaction is not spontaneous under standard conditions at 298 K, at what temperature (if any) would the reaction become spontaneous?

4.	4. Use the Gibbs table to calculate the ΔG^0 for each reaction. Then, calculate the K_{eq} at 298 K the following reactions. $\Delta G^0 = -RT \ln K$				
	(Equation A)	$H_2(g) + I_2(g) =$	₹ 2 HI (g)		
	(Equation B)	$C_2H_5OH(g) \leftrightarrows C_2H_5OH(g)$	$C_2H_4(g) +$	$H_2O(g)$	
5.	Based on your values for K_{eq} in the previous problem, which side (reactants or products) of the equilibrium reaction is favored? Recall that a BIG K_{eq} favors the products side.				
	(Equation A)		(Equatio	n B)	
6.	Consider the following e	quation:			
$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \leftrightarrows 2 \operatorname{NO}_2(g) \qquad \Delta H < 0$					
	(a) Is this an endothermic or exothermic process? Explain your reasoning.				
	(b) Which equation shown below would best fit the above equation?				
	2 NO(2) 15 O (2) +	2 NO () F	23		NO

(c) Would you expect to ΔS to be positive or negative for this chemical reaction? Explain.

7. Calculate ΔG° using $\Delta G^{\circ} = \Delta H - T \Delta S$. Also, for each question, tell whether or not the reaction will be spontaneous.

a)
$$CH_3OH(l) + 1\frac{1}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

$$\Delta H = -638.4 \text{ kJ}$$
 $\Delta S = 156.9 \text{ J / K}$

b)
$$2 \text{ NO}_2(g) \rightarrow \text{N}_2\text{O}_4(g)$$

$$\Delta H = -57.2 \text{ kJ}$$
 $\Delta S = -175.9 \text{ J / K}$

8. Again find ΔG at 25°C for the reaction

$$CH_3CO_2H_{(1)} + 2O_2_{(g)} \rightarrow 2CO_2_{(g)} + 2H_2O_{(g)}$$

This time using the Table of Thermochemical Data and the formula: $\Delta G = \Sigma \Delta G^{\circ}_{products} - \Sigma \Delta G^{\circ}_{reactants}$

9. For the reaction below,

$$Fe_2O_{3(s)} + 3 CO_{(g)} \rightarrow 2 Fe_{(s)} + 3 CO_{2(s)}$$
 $\Delta G^{\circ} = -31.3 \text{ kJ}$

Calculate the standard free energy of formation of the ferric oxide, Fe₂O₃.

10. Calculate ΔG at 25°C for the following reaction using $\Delta G = \Delta H$ - T ΔS . Will this reaction be spontaneous at this temperature?

$$CH_{3}CO_{2}H_{\ (I)}+2\ O_{2\ (g)}\rightarrow 2\ CO_{2\ (g)}+2\ H_{2}O_{\ (g)}$$